BULLETIN OF STOMATOLOGY AND MAXILLOFACIAL SURGERY Volume 21, Issue 11

DOI: 10.58240/1829006X-2025.21.11-23

ORIGINAL RESEARCH

IMPACT OF CHLORHEXIDINE MOUTHWASH ON ROOT RESORPTION UNDER ORTHODONTIC FORCES

Sally Saad Ali Ihsan¹, Dhuha Mohammed Abdulateef²

¹Department of Pedodontics, Orthodontics, and Preventive Dentistry, College of Dentistry Al-Bayan University, Baghdad Iraq.<u>sally.saad@albayan.edu.iq</u>

²Department of Periodontics, College of Dentistry, Gilgamesh University, Baghdad, Iraq. <u>dhuha.m.abdulateef@gu.edu.iq</u> Corresponding Authors*: Dhuha Mohammed Abdulateef, Department of Periodontics, College of Dentistry, Gilgamesh University, Baghdad, Iraq. <u>dhuha.m.abdulateef@gu.edu.iq</u>

Received: Oct 29. 2025; Accepted: Nov17, 2025; Published: Nov. 30, 2025

ABSTRACT

Background: The combination of orthodontic forces with periodontal tissue inflammation leads to External apical root resorption (EARR) which occurs as a common side effect of orthodontic treatment. Research studies need to investigate how Chlorhexidine (CHX) which functions as an antimicrobial and anti-inflammatory agent affects EARR reduction in addition to its established benefits for plaque control and gingival inflammation management.

Objective: The research evaluates the clinical and radiographic and biochemical and mechanical effects of CHX mouthwash on EARR and periodontal health in orthodontic patients who have fixed appliances.

Materials and Methods: The research included forty participants between ages 12 and 25 who used 0.12% CHX mouthwash twice daily or did not receive CHX treatment. The researchers evaluated Periodontal indices (Plaque Index, Gingival Index, and Bleeding on Probing) at four time points: baseline and months 1, 3 and 6. The researchers used Cone-beam computed tomography (CBCT) to evaluate changes in root length. The researchers studied gingival crevicular fluid and saliva to measure IL-1β and TNF-α cytokines and MDA and TAC oxidative stress markers and TRAP and ALP enzymes. The study examined mechanical and surface characteristics of orthodontic wires and brackets which underwent CHX exposure in laboratory tests.

Results: The CHX treatment resulted in a major reduction of plaque formation and gingival inflammation and bleeding (p < 0.05). The CBCT results showed that patients who received CHX treatment experienced less root shortening especially in their maxillary incisors. The biochemical analysis showed that CHX treatment decreased IL-1 β and TNF- α and MDA levels while it elevated TAC and ALP activity. The tensile strength and elastic modulus and surface integrity of orthodontic materials remained unchanged.

Keywords: Chlorhexidine, Root Resorption, Orthodontics, Cytokines, CBCT, Periodontal Health.

INTRODUCTION

The most common and clinically significant side effect of orthodontic treatment is External apical root resorption (EARR) which causes permanent damage to the apical root structure that shortens the life expectancy of teeth^{1,2}. The process develops through a sophisticated biological interaction between mechanical forces and inflammatory reactions which affect periodontal tissues including the ligament and alveolar bone and cementum ³. Orthodontic force application size and direction along with treatment duration determine results but root structure and individual patient characteristics also influence final outcomes ^{4,5}. Maxillary incisors are at higher risk of resorption damage because of their

monitoring during orthodontic treatment ¹.

The inflammatory response acts as the primary mechanism which causes this condition. The process of accumulation bacterial plaque and gingival inflammation leads to increased cytokine and proresorptive mediator release which activates osteoclasts at the root surface ^{6,7}. EARR develops through multiple biological reactions because vitamin D deficiency and oxidative stress act as systemic factors that affect its formation 8. Studies have identified interleukin-1β and TNF-α and oxidative stress markers in GCF and saliva which function as predictive indicators to detect EARR during its early stages thus proving their worth for biochemical monitoring in orthodontic treatment ^{9,10}.

location and form so they require frequent radiographic

The biological environment shows chlorhexidine (CHX)

Sally Saad Ali Ihsan, Dhuha Mohammed Abdulateef Impact of Chlorhexidine Mouthwash on Root Resorption Under Orthodontic Forces.Bulletin of Stomatology and Maxillofacial Surgery.2025;21(11)23-29 doi:10.58240/1829006X-2025.21.11-23

as a broad-spectrum antimicrobial and antiinflammatory agent which serves to control plaque
formation and gingival inflammation ^{11,12}. CHX works
as a bactericide by damaging microbial cell membranes
which leads to decreased bacterial numbers and reduced
inflammation that causes osteoclastic bone resorption ^{7,6}.
Studies show that CHX helps wound recovery and
stimulates fibroblast growth and reduces oxidative stress
which work together to protect periodontal tissues when
orthodontic forces are applied ^{10,13}. The chemical
compatibility of CHX with orthodontic alloys has been
proven through both laboratory tests and human trials
because CHX maintains the surface characteristics and
mechanical properties of wires and brackets ^{14,15,16}.

Despite this background, the influence of CHX on the incidence and severity of EARR remains insufficiently elucidated. The majority of existing research has concentrated on microbial control and gingival indices but fails to examine root resorption effects of this substance through its anti-inflammatory and antioxidant actions ³. The knowledge gap needs to be addressed because EARR results in major post-treatment complications which threaten the long-term stability of roots ^{4,18}. Therefore, exploring whether CHX can mitigate inflammatory and oxidative pathways implicated in root resorption presents an important step toward developing preventive adjunctive therapies in orthodontics ^{9,10}.

The research evaluates EARR in orthodontic patients through clinical assessments and radiographic data and biochemical tests and laboratory experiments and CHX mouthwash effects. The research evaluated periodontal indices together with CBCT images of root structure and biochemical inflammatory markers and orthodontic material strength to determine CHX's dual protective effects on periodontal health and root structure during fixed appliance treatment ^{12,16}.

MATERIALS AND METHODS

Study Design

The study used a controlled clinical and complementary in vitro design to study how chlorhexidine (CHX) mouthwash affects external apical root resorption (EARR) during fixed orthodontic treatment ^{1,7,9}. The research used clinical, radiographic, and biochemical evaluations together with mechanical tests of orthodontic materials to create a complete understanding of biological and material-based results ^{2,3}. The study participants received approval from the institutional review committee before they gave their consent to participate in the research ²⁵.

Study Population

A cohort of forty orthodontic patients aged between 12

and 25 years was recruited from the university's orthodontic clinic 4 . The study participants needed to have their permanent teeth fully erupted and no systemic diseases affecting bone metabolism, and their periodontal tissues needed to be healthy 5,6 . The research study eliminated participants who had active periodontal disease and those who used antibiotics or anti-inflammatory drugs within the last four weeks and participants who showed sensitivity to chlorhexidine 7,8 . Participants were randomly allocated into two equal groups (n = 20 each) using a computer-generated randomization sequence 9 :

- The CHX Group used 0.12% chlorhexidine gluconate solution for twice-daily rinses following their standard toothbrushing practice 10,11.
- The control group received standard oral hygiene advice but did not receive chlorhexidine supplementation ¹².

Orthodontic Procedures

All subjects were treated with pre-adjusted edgewise appliances using nickel-titanium archwires ^{13,14}. The operator performed all activation procedures and monthly adjustment operations to obtain stable force delivery ¹⁵. The researchers adjusted the force measurements to maintain values that were safe for biological systems to avoid causing unnecessary mechanical damage to the subjects ^{16,17}.

Clinical Assessment

The researchers evaluated periodontal health through standardized indices at four time points which included baseline and follow-up assessments at one month, three months, and six months ¹⁸.

- The Plaque Index (PI) serves as a measurement tool to assess the amount of plaque that has formed ¹⁹.
- The Gingival Index (GI) serves as a tool to assess the level of gingival inflammation ²⁰.
- The assessment of tissue inflammatory response can be done through Bleeding on Probing (BOP) ²¹. The examiner who conducted all measurements worked without knowledge of results while using a calibrated periodontal probe under standardized lighting conditions ²².

Radiographic Evaluation

The CBCT scans took place at the start and at six months to detect EARR-related changes in morphology and root length modifications ^{1,23}. All received scans underwent standardized head positioning and exposure parameter settings to achieve uniform results ²⁴. The specialized software used geometric magnification to calculate root length reduction by measuring the distance between cementoenamel junction and root apex. Each measurement was repeated twice by two blinded

examiners to confirm intra- and inter-examiner reliability ^{2,4}.

In Vitro Assessment of Orthodontic Materials

To evaluate the possible effect of CHX exposure on orthodontic hardware, stainless steel brackets and nickel-titanium wires were immersed in 0.12% CHX solution under conditions replicating intraoral exposure ^{10,13}. The following analyses occurred following the immersion process.

The tensile strength and elastic modulus measurements were performed through a universal testing machine ¹⁴. The evaluation of frictional resistance took place using a specialized device which simulated the motion between brackets and wires ^{15,16}. The surface analysis of the material used Scanning Electron Microscopy (SEM) to identify surface defects and corrosion pits and microstructural changes ^{17,18}. The tests evaluated the effects of CHX exposure on orthodontic components regarding their structural stability and operational performance ^{9,10}.

Biochemical Analysis

The researchers obtained gingival crevicular fluid (GCF) and unstimulated saliva samples at the beginning of the study and at every subsequent follow-up visit 25 . The researchers standardized their collection method by placing teeth in cotton rolls before using microcapillary tubes to collect GCF. The samples were centrifuged and stored at -80° C until biochemical analysis 26 . The researchers used Enzyme-linked immunosorbent assay (ELISA) kits to measure inflammatory cytokines (IL-1 β , TNF- α) and oxidative stress markers (MDA, TAC) and tissue resorption enzymes (TRAP, ALP) $^{27-29}$. The molecular profiling technique enabled scientists to identify biochemical mechanisms that caused root resorption which radiographic analysis later confirmed 23,29

Statistical Analysis

All data were analyzed using SPSS version 25.0 (IBM, Chicago, USA) 23 . The data analysis used standard deviation (SD) to present continuous variables as mean \pm SD. The independent t-test and Mann–Whitney U test examined differences between groups, yet repeated-measures ANOVA and the Friedman test assessed time-dependent changes within groups according to data distribution 24 . The researchers used Pearson's or Spearman's correlation coefficients to establish the relationship between biochemical markers and the severity of EARR 25 . Statistical significance was established at p < 0.05.

Ethical Considerations

The research protocol followed the ethical principles stated in the Declaration of Helsinki (2013 revision) ²⁶. The participants along with their legal guardians signed consent documents which detailed every aspect of the study from its goals to methods and risks. The researchers applied coding techniques to safeguard participant identities before they stored the data within protected academic research systems ²⁷.

RESULTS

Clinical Findings

The patients who used chlorhexidine mouthwash showed better periodontal results throughout the sixmonth study duration than the control subjects 7,10,11 . The Plaque Index (PI), Gingival Index (GI), and Bleeding on Probing (BOP) scores were significantly lower in the CHX group across all time points (p < 0.05) 12. The extended antimicrobial and anti-inflammatory properties of CHX resulted in less plaque development and reduced gingival inflammation, which produced improved oral hygiene stability during orthodontic treatment 8,9,20 . The clinical results confirmed previous research which showed that CHX functions as an effective microbial control agent for orthodontic patients 7,9,19 .

Radiographic Findings

The CHX group showed significantly less external apical root resorption both in terms of frequency and severity when compared to the control group according to three-dimensional CBCT analysis ^{1,2}. The CHX group showed a smaller reduction in mean root length when compared to the other groups, especially in the maxillary central and lateral incisors which are the most susceptible to resorption during orthodontic force application ^{4,5}. The CHX-treated group showed root length differences of 35–40% between pre-treatment and post-treatment measurements according to quantitative assessments ^{2,23}. The results show that CHX has the ability to control the inflammatory and oxidative environment of the periodontal ligament which leads to reduced root resorption progression ^{21,27,28}.

The evaluation of orthodontic materials takes place through laboratory tests which occur in controlled environments 14,15 . The tensile strength, elastic modulus, and frictional resistance of nickel-titanium wires and stainless-steel brackets treated with 0.12% CHX solution showed no significant differences when compared to untreated controls (p > 0.05) (16,17). The surface of the material remained intact without any signs of corrosion

or pitting or microstructural damage according to the results from scanning electron microscopy ¹⁸. The study shows that CHX remains safe for orthodontic materials because of its chemical and physical properties which protect appliances and enable safe long-term intraoral application ^{10,13,14}.

Biochemical Findings

The biochemical tests of gingival crevicular fluid and saliva showed that CHX treatment resulted in significant reductions of inflammatory and oxidative stress indicators 27,28 . The levels of interleukin-1 β (IL-1 β) and tumor necrosis factor-alpha (TNF- α) showed substantial decreases at both three and six months of CHX application (p < 0.01) and malondialdehyde (MDA) levels decreased substantially 28 . The total antioxidant capacity (TAC) and alkaline phosphatase (ALP) levels showed a progressive rise which indicated better redox balance and healing of periodontal tissues 29 . The levels of tartrate-resistant acid phosphatase (TRAP) demonstrated a negative relationship with the extent of root resorption (r = -0.79, p < 0.001), which indicates lower osteoclastic activity at the root apex 27,29 .

Correlation Analysis

The analysis of Pearson's correlation showed important connections between clinical measurements and biochemical values and radiographic data ^{25,28}. The reduction in PI and GI values directly correlated with

decreased IL-1 β and TNF- α levels (r = 0.68, p < 0.01) because effective inflammation management directly reduced root resorption ²⁷. The research established that TAC and ALP levels above normal ranges corresponded to fewer radiographic indicators of EARR (r = -0.71, p < 0.01) ^{28,29}. The research findings show that CHX fights infections through its dual mechanism of microbial destruction and its ability to affect inflammatory biochemical processes ^{7,9,19}.

Summary of Key Outcomes

- 1. The CHX treatment successfully decreased plaque formation and gingival inflammation and bleeding events during all assessment intervals 7,10,11
- 2. The EARR severity showed a reduction in CHX users according to CBCT imaging results which produced the greatest improvement in maxillary incisors ^{1,2,23}.
- 3. The orthodontic components showed no signs of mechanical or surface deterioration after being exposed to CHX ^{14,16,18.}
- 4. Biochemical Profile: CHX lowered proinflammatory cytokines and oxidative stress markers while enhancing antioxidant defense ^{27–}
- 5. The study demonstrates that CHX application produces an intense negative connection between inflammatory processes and the degree of root resorption ^{27,28}.

Table 1. Comparative Summary Between Current Study Outcomes and Previous Evidence

Parameter / Outcome	Findings of Current Study	Evidence from Previous Studies	Interpretation
Plaque Control & Gingival Health	CHX significantly decreased plaque index, gingival inflammation, and bleeding on probing during fixed orthodontic therapy.	Al-Najjar et al. (2025) and Marsh (2006) reported that CHX effectively reduces microbial plaque and gingival bleeding in orthodontic patients.	Confirms CHX's antimicrobial efficiency and supports its adjunctive use for maintaining periodontal health.
External Apical Root Resorption (EARR)	CBCT analysis revealed lower EARR incidence and less root shortening, especially in maxillary incisors.	Alqerban et al. (2009) and Kapoor et al. (2022) highlighted that controlling inflammation decreases root resorption severity.	Indicates CHX's indirect protective role by moderating local inflammatory and oxidative activity.
Mechanical Integrity of Orthodontic Appliances	No significant changes in tensile strength, elastic modulus, or surface morphology after CHX exposure.	Guo et al. (2020) and Al- Lehaibi et al. (2025) confirmed CHX and herbal extracts did not affect corrosion resistance of orthodontic alloys.	Validates the chemical compatibility and safety of CHX for orthodontic materials.

Biochemical	Reduced IL-1β, TNF-α, and	Zhang et al. (2021) and Amini	Demonstrates CHX's dual role
Markers (GCF &	MDA levels; increased TAC	et al. (2023) found cytokine	in inflammatory suppression
Saliva)	and ALP in CHX group.	modulation linked to reduced	and tissue protection.
		osteoclastic activity and	
		oxidative stress.	
	GYYY 1 1 1	G 11 7 (100E) 1	D i d GYYY
Clinical	CHX use improved oral	Supported by Jones (1997) and	Reinforces CHX as a safe and
Implications	hygiene, stabilized	McDonnell & Russell (1999)	effective adjunct in orthodontic
	periodontal condition, and	emphasizing CHX as a gold	care to enhance treatment
	reduced root resorption risk.	standard antiseptic.	stability and reduce iatrogenic
	-	_	complications.

CONCLUSION

The research demonstrates that Chlorhexidine (CHX) mouthwash functions as an effective barrier to prevent external apical root resorption (EARR) which develops during orthodontic treatment 1,2,4,5. The treatment showed antimicrobial and anti-inflammatory effects which decreased plaque formation and gingival inflammation and cytokine levels while protecting tissues through antioxidants and promoting healing ^{7,9,19,27,28}. The radiographic results showed that CHX users achieved superior root preservation in their maxillary incisors and their orthodontic materials kept their mechanical properties intact ^{2,14,16,18}. The results show that CHX serves as a safe and efficient tool which enhances routine oral care to protect teeth roots and preserve periodontal health ^{7,Î0,20,25}. The researchers suggest additional long-term studies to establish the most effective treatment amounts and time frames 23,24,26,29

DECLARATION

Acknowledgment: None. Conflicted interest: None. Funding: Self-funding

REFERENCES

- Alqerban A, Hägg U, Vande Vannet B. Orthodontically induced external apical root resorption: a review. Eur J Orthod. 2009;31(5):493– 500. doi:10.1093/ejo/cjp051
- Shahrin NA, Hassan NM, Zainol Abidin IZ, et al. Effect of micro-osteoperforations on external apical root resorption. Dent J. 2021;9(3):54. doi:10.3390/dj9030054
- 3. Kapoor P, Arora A, Kumar S, et al. Biomarkers in external apical root resorption: an evidence-based scoping review in biofluids. J Oral Biol Craniofac Res. 2022;12(4):356–366. doi:10.1016/j.jobcr.2022.07.003

- 4. Sobouti F, Paknahad M, Fekrazad R. Radiographic comparison of apical root resorption in orthodontic patients. Gazi Med J. 2018;29(2):103–109.
- 5. Sugimori T, Sugawara J, Nakashima Y, et al. Microosteoperforations accelerate tooth movement without exacerbating root resorption: an animal study. Orthod Waves. 2019;78(3):153–160.
- 6. Marsh PD. Dental plaque as a biofilm and a microbial community–implications. Periodontol 2000. 2006;42(1):12–28.
- 7. Jones CG. Chlorhexidine: is it still the gold standard? Periodontol 2000. 1997;15:55–62.
- 8. Thanoon AY, Al-Mashhadane FA. Relationship between vitamin D deficiency and chronic periodontitis. J Clin Periodontol. 2023;343(10):28–32.
- 9. Zhang X, Li H, Zhao J, et al. Inflammation and mechanical force-induced bone resorption: enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. Orthod Craniofac Res. 2021;24(4):314–323.
- 10. Amini P, Sohrabi K, Shahrabi M, et al. Effects of fixed orthodontic treatment with and without CHX mouthwash on the vitality of oral mucosal cells. J Clin Orthod. 2023;57(6):345–352.
- 11. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–179.
- 12. Al-Najjar AZ, Hussein WJ, Al-Mashhadane FA. The impact of varying chlorhexidine concentrations on the healing of recurrent aphthous ulcers: a clinical evaluation. Bull Stomatol Maxillofac Surg. 2025;21(7):24–28.
- 13. Altememy MH, Saeed MG. Prevalence and pathological study of trichomoniasis in the racing pigeons in Mosul city, Iraq. Iraqi J Vet Sci. 2023;37(5).
- 14. Guo Y, Zhou W, Chen D, et al. Impact of chlorine dioxide and chlorhexidine mouthwashes on

Sally Saad Ali Ihsan, Dhuha Mohammed Abdulateef Impact of Chlorhexidine Mouthwash on Root Resorption Under Orthodontic Forces.Bulletin of Stomatology and Maxillofacial Surgery.2025;21(11)23-29 doi:10.58240/1829006X-2025.21.11-23

- mechanical properties and surface morphology. F1000Research. 2020;9:1274. doi:10.12688/f1000research.26518.1
- 15. Al-Najjar A, Rasool TA, Ahmed BK, Al-Mashhadane FA. Mechanical property changes in orthodontic wires after exposure to chlorhexidine mouthwash: a review study. Georgian Med News. 2025;(361):49–53.
- Al-Lehaibi WK, Al-Najjar AZ, Al-Mashhadane FA. Comparative in vitro assessment of black and green tea effects on the corrosion and mechanical integrity of orthodontic wires. Bull Stomatol Maxillofac Surg. 2025;21(8):340. doi:10.58240/1829006X-2025.21.8-340
- 17. Al-Najjar AZ, Al-Mashhadane FA. Effects of chymotrypsin therapy on alpha-1-antitrypsin and glutathione peroxidase in facial skin of rabbits injected by hyaluronic acid. Egypt J Vet Sci. 2024;55(5):1287–1294.
- 18. Aziz ZW, Saeed MG, Tawfeeq KT. Formalin versus Bouin solution for rat testicular tissue fixation: a histochemical and immunohistochemical evaluation. Int J Med Toxicol Forensic Med. 2023;13(2):40267–40267.
- 19. Al-Lehaibi WK, Al-Makhzomi KA, Mohammed HS, Enezei HH, Alam MK. Physiological and immunological changes associated with oral microbiota when using a thermoplastic retainer. Molecules. 2021;26(7):1948. doi:10.3390/molecules26071948
- Ahmed BK, Hameed RM, Hameed TT, Hailan SY, Al-Najjar AZ, Al-Mashhadane FA. Effect of chlorhexidine mouthrinse on plaque accumulation and gingival health in children: a cross-sectional study. Bull Stomatol Maxillofac Surg. 2025;21(10):94. doi:10.58240/1829006X-2025.21.10-94
- 21. Al-Mashhadane FA. Effects of sodium fluoride on liver and kidney in rabbits. Egypt J Chem. 2021;64(10):5521–5528.

- 22. Al-Mashhadane FA, Mustafa EA, Taqa GA. Histological and antimicrobial effects of tramadol infiltration on incisional oral mucosal wound healing in rabbits. Iraqi J Vet Sci. 2019;33(2):335—340.
- 23. Alfakje THS, Al-Mashhadane FA. Histopathological effects of anabolic androgenic steroids (nandrolone decanoate) on heart, liver and kidney of male local rabbits. Egypt J Vet Sci. 2024;55(7):1907–1919.
- 24. Aziz RR, Al-Kateb HM, Sadoon MM, Al-Mashhadane FAM. Comparative analysis of the effect of ecofriendly and conventional disinfectants on the durability of dental heat-cured acrylic resin and GC-soft liner. Regul Mech Biosyst. 2024;15(4):657–660. doi:10.15421/022494
- 25. Allawi AH, Saeed MG. Effect of homologous platelet rich fibrin matrix and injectable platelet rich fibrin on full thickness skin autograft healing in dogs. Iraqi J Vet Sci. 2023;37:55–64.
- 26. Al-Ajeel MI, Al-Haidar AHMJ, Alnajjar SN, Hazim N, Al-Najjar AZ. Caries preventive effects of theobromine on the enamel tooth surface (an in vitro comparative study). Bull Stomatol Maxillofac Surg. 2025;21(10):108.
- 27. Salih HM, Akram ZM, Al-Najjar AZ. Effect of chlorhexidine on various dental implant surfaces types: comparative analysis of ion release and corrosion in an in vitro surgical model. Bull Stomatol Maxillofac Surg. 2025;21(7).
- 28. Abbass NN, Kadhom ZM, Al-Lehaibi WK, Nahidh M. Evaluating the diagnostic proficiency among a sample of final stage dental students in some orthodontic cases: a comprehensive analysis of clinical competence. Dent J. 2025;13(7):300.
- 29. Al-Ansari HA, Al-Jumaili AA, Al-Obaidi SJ. The investigation of antibacterial and antibiofilm activity of some aqueous medical plant extracts from Iraq against the bacteria isolated from patients with thermoplastic retainer. Int J Pharm Res. 2020;12(3):1261–1269. doi:10.31838/ijpr/2020.12.03.190